Facultad de Ingeniería de Sistemas y Electrónica

Carrera Profesional de Ingeniería Mecatrónica
Informe de Suficiencia Profesional para optar el Título Profesional de Ingeniero Mecatrónico

"PROYECTO DE INVERSIÓN, PARA LA IMPLEMENTACIÓN DE UNA MÁQUINA COMPENSADORA DE PIEZAS CERÁMICAS EN LA LÍNEA AUXILIAR DEL HORNO MONOCANAL"

Bachiller:
Estrella Panez, Julio Cesar
Lima - Perú
2016
AGRADECIMIENTOS

A todas las personas que de alguna forma se sumaron en este esfuerzo con sus consejos y buenos deseos, a mi madre que con su sabiduría y el apoyo que solo ella sabe dar, a mi padre por siempre alentarme a seguir adelante con mis estudios, a mi hijo, por su apoyo en todo el proceso de mi formación, del desarrollo del ISP y su comprensión por no haberle brindado todo el tiempo para él. Es la motivación de todo lo que hago.
RESUMEN

En el presente informe se presenta la simulación de una máquina compensadora de pieza cerámica e integrada con la línea auxiliar del horno monocanal de una empresa de productos cerámicos. El proyecto se ha dividido en cuatro capítulos: En el Capítulo 1, se realiza el planteamiento y formulación del problema, los objetivos, alcance y limitaciones, justificación y estado del arte. La descripción de todas las máquinas y componentes a utilizar en el proyecto se presenta en el Capítulo 2. En el Capítulo 3, se describe el desarrollo de la solución, simulación de la máquina compensadora, programación del PLC.

Los resultados experimentales obtenidos, las conclusiones y posibles trabajos futuros por realizar se encuentran en el Capítulo 4. Además; se muestran las referencias bibliográficas de donde se ha obtenido información y en el anexo; el cronograma del proyecto, despiece de la máquina.

El análisis y simulación del proceso se realizó usando el software SolidWorks, mientras para el desarrollo de la automatización del proyecto se utilizaron los siguientes programas: software de programación Cx-ONE Omron para programación del PLC y software de diseño.

Se presenta el análisis costo/beneficio del proyecto, con el cual se ha determinado la rentabilidad del proyecto.

Palabras claves: Máquina compensadora de piezas cerámicas, Línea auxiliar, horno monocanal, PLC OMRON
INDICE

CAPÍTULO 1 ............................................................................................................................................. 1

ASPECTOS GENERALES .......................................................................................................................... 1

1.1 Definición del Problema .................................................................................................................... 1

1.1.1 Descripción del Problema ............................................................................................................. 1

1.1.2 Formulación del Problema ............................................................................................................ 2

1.2 Definición de Objetivos .................................................................................................................... 2

1.2.1 Objetivo General ........................................................................................................................... 2

1.2.2 Objetivos Específicos ................................................................................................................ 2

1.2.3 Alcances y Limitaciones ............................................................................................................. 3

1.2.4 Justificación .................................................................................................................................. 3

1.2.5 Estado del Arte ............................................................................................................................... 4

CAPÍTULO 2 .................................................................................................................................................. 7

MARCO TEÓRICO ....................................................................................................................................... 7

2.1 Fundamento Teórico .......................................................................................................................... 7

2.2.1 Horno Monocanal .......................................................................................................................... 7

2.2.2 Máquina Panconi ........................................................................................................................... 10

2.2.3 Línea Principal del Horno Monocanal .......................................................................................... 11

2.2.4 PLC (Controlador Lógico Programable) ....................................................................................... 12

2.2.4.1 Ventajas del PLC ...................................................................................................................... 12

2.2.4.2 Partes del PLC ........................................................................................................................... 12

2.2.5 Sensores ........................................................................................................................................ 14

2.2.5.1 Sensores de posición ............................................................................................................... 14

2.2.5.2 Sensores de contacto .............................................................................................................. 15
CAPÍTULO 2

2.2.5.3 Sensores de movimiento ..................................................................................... 16
2.2.6 Sistema Mecánico ..................................................................................................... 16
2.2.6.1 Cadenas .................................................................................................................. 16
2.2.6.2 Piñón ........................................................................................................................ 17

CAPÍTULO 3......................................................................................................................... 19

DESARROLLO DE LA SOLUCIÓN...................................................................................... 19

3.1 Análisis ......................................................................................................................... 19
3.1.1 Análisis Fase 1 .......................................................................................................... 20
3.1.1.1 Salida del Horno Monocanal .................................................................................... 22
3.1.1.2 Línea Auxiliar del Horno Monocanal ...................................................................... 22
3.1.1.3 Línea de Transporte principal del Horno Monocanal .............................................. 23
3.1.1.4 Máquina Panconi .................................................................................................... 23
3.1.2 ANÁLISIS FASE 2 ..................................................................................................... 24
3.1.2.1 Diseño y Programación de secuencia en PLC ......................................................... 25
3.1.2.2 Simulación de la pantalla Touch Screen ................................................................. 27
3.2 Desarrollo del Proyecto ............................................................................................... 28
3.2.1 Estructura del Proyecto ............................................................................................ 28
3.2.2 Fase 1: Planeamiento ............................................................................................... 29
3.2.2.1 Levantamiento de Información ................................................................................ 29
3.2.2.1.1 Funcionamiento de la línea Auxiliar .................................................................... 29
3.2.2.1.2 Dimensionamiento ............................................................................................... 29
3.2.2.1.3 Cotizaciones ......................................................................................................... 29
3.2.3 Fase 2: Simulación ..................................................................................................... 29
3.2.3.1 Análisis Mecánico 1 ............................................................................................... 29
3.2.3.2 Análisis Mecánico 2 ................................................................. 29
3.2.3.3 Análisis Mecánico 3 ................................................................. 29
3.2.3.4 Pruebas ................................................................. 29
3.2.3.5 Programación de la Automatización ........................................... 30
3.2.3.6 Programación del PLC .......................................................... 30
3.2.3.7 Programación HMI ............................................................... 30

CAPÍTULO 4 .................................................................................. 32

RESULTADOS EXPERIMENTALES ..................................................... 32

4.1 Resultados .............................................................................. 34
4.2 Evaluación de la inversión y beneficios esperados ......................... 35
4.2.1 Estimación de la Inversión ...................................................... 35
4.2.2 Estimación de la Inversión en Máquinas y equipos ...................... 35
4.2.3 Estimación de la Inversión en compra de materiales .................... 35
4.2.4 Resumen de la Inversión ......................................................... 36
4.2.5 Análisis costo beneficio ......................................................... 36
4.2.6 Retorno de la Inversión (Pay Back) ........................................... 38
4.3 Cronograma de Proyecto ......................................................... 39
ÍNDICE DE FIGURAS

Figura 1: Árbol del Problema ........................................................................................................... 2
Figura 2: Horno Monocanal ............................................................................................................. 9
Figura 3: Máquina Panconi ............................................................................................................. 10
Figura 4: Línea de Transporte Principal ......................................................................................... 11
Figura 5: PLC CP1E-N20 ............................................................................................................... 12
Figura 6: Sensores ........................................................................................................................ 14
Figura 7: Sensores Fotoeléctricos ................................................................................................ 14
Figura 8: Sensores de Barrera ....................................................................................................... 15
Figura 9: Sensor de Reflexión ....................................................................................................... 15
Figura 10: Sensor de Contacto ...................................................................................................... 16
Figura 11: Sensor de Movimiento ................................................................................................ 16
Figura 12: Cadenas ....................................................................................................................... 17
Figura 13: Piñón Doble .................................................................................................................. 18
Figura 14: Diagrama de Flujo del Proceso ................................................................................... 21
Figura 15: Simulación Salida del Horno Monocanal ..................................................................... 22
Figura 16: Línea Auxiliar del Horno Monocanal .......................................................................... 22
Figura 17: Línea Principal del Horno Monocanal ......................................................................... 23
Figura 18: Máquina Panconi .......................................................................................................... 23
Figura 19: Configuración PLC Omron ......................................................................................... 25
Figura 20: Programa Selección de Formato ................................................................................. 26
Figura 21: Programa de Carga y Descarga del Compensador ..................................................... 26
Figura 22: Programa para Visualizar Alarmas ............................................................................. 26
Figura 23: Flujograma de la Lógica del PLC ............................................................................... 27
Figura 24: Pantalla de Inicio ......................................................................................................... 28
Figura 25: Pantalla de Menú ......................................................................................................... 28
Figura 26: Estructura del Proyecto (EDT) ................................................................................... 31
Figura 27: Tablero Eléctrico de la Maquina Stand By................................................................. 33
Figura 28: PLC Omron, Utilizado en la prueba de accionamiento del motor .................... 33
Figura 29: Motor de 2.2 KW .................................................................................................. 34
Figura 30: Gantt de Actividades .......................................................................................... 39
Figura 31: Simulación en SolidWorks ................................................................................ 42
Figura 32: Simulación en SolidWorks ................................................................................ 42
Figura 33: Simulación en SolidWorks ................................................................................ 43
Figura 34: Despiece de Maquina Compensadora .............................................................. 44
Figura 35: Despiece de Maquina Compensadora .............................................................. 45
INTRODUCCIÓN

El proyecto “Proyecto de Inversión, para la Implementación de una Máquina Compensadora de Piezas cerámicas en la línea auxiliar del horno monocanal”; surge ante la necesidad de realizar una mejora en la línea auxiliar del horno monocanal de una empresa cerámica, en la cual; se han detectado ciertos factores que limitan el reproceso de las piezas cerámicas que son enviadas por esa línea. Estos factores son defectos críticos (La mayor parte de estas piezas se rompen por no tener nada que evite su caída si el operador no está atento), baja productividad (por la rotura).

Para la solución del problema, se realiza una simulación de una máquina compensadora de pieza cerámica e integrada con la línea auxiliar del horno monocanal; y así aumentar la productividad, eliminar la rotura de piezas, reducir el número de personas que laboran actualmente en el horno.

Por lo expuesto, se consideró realizar una mejora en el proceso de la línea de producción a la salida del horno monocanal; la cual puede ser aplicable a otras industrias cerámicas en general. Una de las limitaciones del presente proyecto es que solo se empleará en empresas que producen cerámicos.

El propósito de este informe es de sustentar y entregar todos los aspectos técnicos ligados a la simulación de la máquina, con el fin de servir como una guía de proyectos similares. El resultado tangible de este trabajo, que consiste en la simulación de una máquina compensadora de piezas cerámicas e integrado con la línea auxiliar del horno monocanal, permitirá sin dudas realizar otros proyectos en la empresa.
CAPÍTULO 1

ASPECTOS GENERALES

1.1. Definición del Problema

Defectos críticos en la línea de transporte auxiliar a la salida del horno monocanal.

1.1.1. Descripción del Problema

Cerámica San Lorenzo S.A.C. es una empresa dedicada a la fabricación de piezas cerámicas y tienen como principales clientes a Sodimac, Maestro Ace Home Center y Cassinelli entre otros; a los cuales les realiza el servicio de fabricación de piezas cerámicas y porcelanato, los mismos que posteriormente son despachados a sus instalaciones. El proceso de fabricación se realizan en distintas áreas.

Las piezas cerámicas que salen del horno monocanal por la línea de producción principal frecuentemente se congestionan por distintos problemas como: mala regulación de guías, mal alineamiento de poleas e ineficiente regulación de velocidad de los motorreductores. Las piezas cerámicas que salen aun después de la congestión automáticamente empiezan a salir por la faja auxiliar del horno monocanal y apiladas manualmente por los operadores de turno, incrementando el número de personal para apilar y por consecuencia baja productividad de piezas cerámicas.
1.1.2. **Formulación del Problema**

Después de realizar el análisis de la situación actual de la salida auxiliar del horno monocanal, se ha determinado que el problema es: La congestión de piezas cerámicas en la línea de producción principal de horno monocanal.

1.2. **Definición de Objetivos**

1.2.1. **Objetivo General**

Simulación de una máquina compensadora de piezas cerámicas en la faja de salida auxiliar del horno monocanal usando la tecnología actual.

1.2.2. **Objetivos Específicos**

- Análisis del tablero de control, el cual albergará los circuitos de control y potencia utilizando un software de diseño.
- Determinar las partes fundamentales y necesarias para el diseño de la máquina compensadora.
- Determinar el tipo de control que permita integrarse al circuito de control del horno monocanal.
- Simular el sistema automatizado e integrado de la línea auxiliar del horno monocanal usando el software SolidWorks.
- Elaborar el costo de inversión que generará el diseño y el desarrollo de un sistema automatizado e integrado para aliviar la congestión en la línea principal del horno monocanal.
1.2.3. Alcances y Limitaciones

Alcances

Este proyecto considera solo el área de hornos de la fábrica, donde actualmente se realiza el proceso de cocción de manera automática. Debido a lo expuesto, se consideró realizar una mejora en el proceso de la línea auxiliar a la salida del horno monocanal; el cual puede ser aplicable a otras industrias cerámicas en general y en los finales de línea de procesos de manufactura cerámica.

Limitaciones

En el desarrollo del proyecto se presentaron las siguientes limitaciones:

- El sistema solo se empleará en empresas que producen cerámicos.

- Debido a la política de la empresa, la revelación de nombres reales, algunas cifras y cierta información que se considera importante y es reservada se evitará mencionarlos en este proyecto.

1.2.4. Justificación

Debido a las diferentes innovaciones tecnológicas que se encuentran hoy en día en el mercado global y la necesidad de optimizar una parte de la línea de producción de la empresa Cerámica San Lorenzo S.A.C; es que se decide realizar la automatización e integración de máquinas en la línea de producción, que asegure la Calidad Total de los productos fabricados por la empresa.

La calidad total solo será posible; cuando la producción no esté expuesta a ningún tipo de rechazo, rotura y congestionamiento. Así mismo, con el presente proyecto se pretende mejorar el índice de productividad, mejorar la calidad y reducir el número de Recursos Humanos; además el personal excedente podrá ser reasignado a otras áreas de la producción.
Luego de la ejecución del proyecto, la empresa incrementará sus utilidades y podrá redistribuirlas con todos sus colaboradores.

1.2.5. **Estado del Arte**

Actualmente el proceso de fabricación de piezas cerámicas, incorpora una máquina Panconi, para eliminar la congestión de piezas cerámicas. Otras líneas de producción más completas incorporan adicionalmente sistemas de compensadores de piezas de grandes dimensiones. No todas las industrias de producción de cerámicos pueden acceder a dicha tecnología por diferentes motivos: planta de producción reducida, variedad de fabricación de productos de piezas cerámicas en la misma máquina, etc. Sin embargo; se puede utilizar las tecnologías por separado y luego integrarlos en su línea de proceso.

Se han analizado algunos trabajos e investigaciones relacionados con el presente proyecto, entre los que destaca:

- **Errece Maquinaria Cerámica**, empresa que fabrica compensadores para industrias cerámicas, alimentarias, etc.

Dispositivo compensador de alimentación para una línea de producción de piezas cerámicas, previsto como medio para recoger piezas cerámicas de una línea de producción y elevarlas a pasos intermitentes, al objeto de acumularlas y luego volverlas a depositar en la línea de producción cuando proceda, de acuerdo con el flujo de piezas que son transportadas en esa línea de producción. El objeto de la invención es permitir la recogida de piezas cerámicas de formatos de mayores dimensiones respecto de las que actualmente pueden ser recogidas con los dispositivos compensadores convencionales.
Como es sabido, en las líneas de producción de piezas cerámicas es necesario a veces regular el flujo de producción, y para ello se conocen dispositivos compensadores de alimentación basados en dos cadenas que discurren verticalmente y de forma perpendicular al sentido de avance de las propias piezas de la línea de producción, de manera que las cadenas cuentan con pivotes o barras que constituyen soportes para desplazar en vertical las propias piezas cerámicas y regular con el ello el flujo en la línea de producción. Actualmente los dispositivos compensadores de alimentación que se conocen se basan en la disposición de dos cadenas próximas y paralelas entre sí, de manera que entre ambas y en base a los pivotes o barras que incluyen las mismas se pueden recoger piezas cerámicas de la línea de producción y elevarlas a pasos intermitentes para acumularlas y luego volverlas de depositar en la línea cuando proceda.

- Ingeniera Plana Alta S.A.L "Automatización Industrial", "Compensador de varillas 2 cadenas"

Compensador de varillas con dos cadenas especialmente diseñado para pequeños y medianos formatos, pudiendo trabajar con azulejos en crudo y en cocido. Existen varios modelos en función de la anchura de las piezas a almacenar.

Las piezas cerámicas entran y salen del compensador por medio de la rodillera y las correas de la línea, que enlazan con la rodillera del compensador en la entrada y la salida. Las piezas entrantes pasan de largo en caso de no haber orden de carga. Cuando el compensador tiene orden de carga, las piezas se van elevando una a una hasta que desaparece la orden de carga o bien se alcanza su capacidad máxima. Estando desactivada la orden de carga, la máquina compensadora descarga las piezas una a una en la rodillera hasta vaciarse por completo.
Se han analizado algunos trabajos e investigaciones relacionados con el presente proyecto, entre los que destaca:

Nariño Chávez, Ramón Antonio, 2008; en el proyecto de Tesis de Grado, “Diseño de una máquina apiladora de tabletas cerámicas”. (Nariño Ramón, 2008)

Ramón, presenta un proyecto donde trata el diseño de una máquina apiladora de tabletas cerámicas; consta del diseño de un sistema de sujeción, sistema transversal y sistema vertical de desplazamiento; también de un programador lógico de control electro-neumático. De igual manera incluye la evaluación técnica y económica de cada una de las alternativas mencionadas. Incluyendo un detallado estudio económico que muestra la rentabilidad del proyecto.

Carlos Glenn Yoong Ormaza, 2012; en el proyecto Tesis de Grado, “Proyecto para implementación de una planta para conformado de láminas metálicas con una capacidad de 500 toneladas por mes”

En uno de sus capítulos presenta un Apilador Automático donde indica las partes de la máquina, el aporte en mi informe es la distribución de cilindro neumáticos, también menciona que tipo de cadenas usa para apilar un producto que pesa aproximadamente 2,1 toneladas y a través de ello asignar el número de pallets consumibles por mes.
CAPÍTULO 2

MARCO TEÓRICO

Con la alta competitividad del rubro de fabricación de piezas cerámicas, el incremento de producción del proceso de cocción, y al no contar con un compensador de piezas cerámicas en la línea auxiliar del horno monocanal que permita descongestionar la línea principal; es que se busca desarrollar una mejora en la línea de producción auxiliar. Actualmente las piezas que se transportan por la línea auxiliar del horno se apilan manualmente por los operarios, ocasionando molestia en el operador por cargar varias piezas a 90°C, después de arreglar el problema de la línea principal devolver las piezas al proceso de producción todo de manera manual, con lo cual el proceso requiere del incremento de personal. Es por ello, que se decide diseñar una máquina compensadora de piezas cerámicas (mediante un PLC) e integración de máquinas (horno monocanal, faja auxiliar y el compensador de piezas).

2.1 Fundamento Teórico

2.2.1 Horno monocanal

El horno monocanal prevé un número de motorreductores (controlado por variadores mecánicos) que son variables en función de la longitud del horno. Cada motorreductor controla tres módulos en las zonas de cocción y como máximo cuatro módulos en las zonas de enfriamiento, el alto número de
quemadores instalados, ya desde el precalentamiento, garantiza un calentamiento progresivo y uniforme evitando la creación de puntos calientes y/o zonas “de sombra” dentro del horno. Los quemadores pueden regularse de forma independiente y permiten controlar puntualmente la curva de cocción. Tiene un ventilador y su conducto llamado aspiración de humos. El ventilador consta de aspas autolimpiantes de alto rendimiento y de un rotor de acero especial utilizable hasta temperaturas continuas de 300°C. Desde el ventilador de presión, el colector principal se divide en dos colectores, uno superior y otro inferior: con este sistema se alimentan de modo independiente los sopladores situados encima y debajo de mesa de los rodillos. En los dos colectores están instaladas sendas compuertas manuales, de tipo mariposa, para permitir la diferenciación del soplado superior e inferior. A través de una serie de tubos de acero inoxidable, situados en la parte superior de los módulos de enfriamiento lento, se aspira el aire del ambiente. Dicho aire, pasando al interior, sustrae calor al material de modo progresivo y uniforme. Una válvula de mariposa, de mando automático, permite regular la aspiración a través del colector general. El soplado directo sobre el material se divide para el enfriamiento final en dos zonas bien precisas. En los primeros módulos se instala, arriba y abajo de la mesa de rodillos, una batería de tubos sopladores aladrados, oportunamente dimensionados. En los últimos módulos se instalan encima y debajo de la mesa de rodillos, baterías con un mayor número de tubos oportunamente dimensionados, para obtener un aumento de la acción de enfriamiento sobre el material antes de que salga del horno. El cuadro eléctrico del horno permite el control y el accionamiento centralizado de todos los parámetros del proceso: temperatura, presión, velocidad de alimentación del producto, etc. Además, el cuadro realiza la memorización de los datos de producción y de proceso así como su visualización en forma gráfica. El cuadro eléctrico engloba todos los
circuits and the electric and electronic programmable devices necessary for a safe operation of the oven. There are other safety devices associated with the oven. In addition to the standard configuration, where a single power frame is installed that houses the PC for supervision, there is an optional configuration, where the PC is accommodated in the interior of a remote control frame. For both configurations (electric power frame-control and double electric frame with remote control) there is the possibility of another option more, which foresees a supervision system with two PCs to perform the control of the process and the management of the data separately. The “software of process” is in charge of the control and the operation of the oven. The other one takes care of the supervision, the management of data and the eventual connection with other computer systems.

Figura 2: Horno Monocanal

Fuente: http://www.sacmiiberica.com
2.2.2 Máquina Panconi

Permite la formación de pisos de producto cocido y el apilado sobre varios niveles en plataformas mediante una pinza con plano de aspiración. El producto cocido será alimentado después de la selección con una máquina de descarga. El completo servomecanismo de la máquina con PLC y variadores aseguran producciones elevadas y permiten un tratamiento ideal del producto. La máquina permite la máxima flexibilidad de la instalación reduciendo los espacios ocupados. Aplicable a todos los tipos de producto y de formato, está disponible también en la versión frontal con las plataformas contiguas, en este modo el servomecanismo del LGV se produce “de cabeza” reduciendo drásticamente las dimensiones laterales y la distancia entre ejes de las líneas de selección.

Figura 3: Máquina Panconi

Fuente: http://www.sitibt.com
2.2.3 Línea principal del horno monocanal

Las bandas son elementos auxiliares de las instalaciones industriales, cuya misión es de recepcionar un producto específico de forma continua para luego trasladarlo a otro punto. Normalmente se encuentran integradas en una línea de proceso. Existen de diferentes tipos, entre las más eficientes tenemos el de tipo banda y rodillos transportadores, por su sencillez en el diseño; está compuesto por una banda, una polea motriz, una polea conducida y un motor eléctrico que sirve de accionamiento.

Figura 4: Línea de Transporte Principal

Fuente: http://www.globbarea.com/private/es/Tecnologia_y_Materias_Primas
2.2.4 PLC (Controlador Lógico Programable)

Es un dispositivo electrónico programable por el usuario, destinado a gobernar máquinas o procesos lógicos y/o secuenciales. Tiene como función reemplazar la lógica de relés para el comando de motores, actuadores, etc.; reemplazar contadores electromecánicos y temporizadores, controles sencillos de lazo abierto y lazo cerrado, control y comando de tareas repetitivas o peligrosas, detección de fallas y manejo de alarmas, regulación de aparatos remotos.

Figura 5: PLC CP1E-N20
Fuente: https://www.ia.omron.com/products/category/automation-systems/programmable-controllers/

2.2.4.1 Ventajas del PLC

Entre lo que podemos destacar: Menor cableado, reducción de espacio, facilidad para mantenimiento y puesta en marcha, flexibilidad de configuración y programación, reducción de costos.

2.2.4.2 Partes del PLC

Un PLC se puede dividir en diferentes partes, las cuales pueden estar integradas (compactos) o modulares:
Fuente de Alimentación: proporciona voltaje y corriente continua a los circuitos electrónicos que forman el controlador.

Batería: sirve para alimentar la memoria RAM mientras el PLC esté sin alimentación.

Módulo de memoria o memoria: Almacena el programa en una memoria que puede ser volátil (RAM) o no volátil (ROM).

CPU: Esta controla la secuencia de ejecución del programa, realiza las operaciones aritméticas y lógicas, coordina la comunicación entre los diferentes componentes, etc.

Módulos de entrada: Reciben las señales eléctricas de los equipos de la instalación que está controlando el proceso, estas señales pueden ser digitales o discretas y analógicas.

Módulos de salida: Envían las señales eléctricas a los equipos de la instalación que está controlando, estas también pueden ser de tipo discreto o analógico.

Puerto de comunicaciones: Es el medio para comunicarse el PLC con la interfaz (HMI), unidades de programación, periféricos, otros PLC’s, etc.
2.2.5 Sensores

Permiten controlar las variables en todo tipo de proceso, se encargan de convertir variables físicas en electrónicas (señal eléctrica); sin ellos no se podría realizar las automatizaciones en lo industrial, comercial, robótica, etc. Existen diferentes tipos de sensores como:

![Diversos tipos de sensores](image)

Figura 6: Sensores
Fuente: http://www.lostipos.com/de/sensores.html

2.2.5.1 Sensores de posición

Su función es medir o detectar la posición de un determinado objeto en el espacio. Dentro de este grupo se encuentran los captadores.

**Captadores fotoeléctricos:** Se encuentra basada en el empleo de una fuente de señal luminosa (lámparas, diodos LED, diodos láser, etc.) y una célula receptora de dicha señal, como pueden ser fotodiodos, fototransistores o LDR, etc.

![Captadores fotoeléctricos](image)

Figura 7: Sensores Fotoeléctricos
**Captadores de barrera:** Estos detectan la existencia de un objeto, porque interfiere la recepción de la señal luminosa.

![Figura 8: Sensores de Barrera](http://1607238.blogspot.pe/2013/05/21-sensores-y-transductores.html)

**Captadores de reflexión:** La señal luminosa es reflejada por el objeto, y esta luz reflejada es captada por el captador fotoeléctrico, lo que indica al sistema la presencia de un objeto.

![Figura 9: Sensor de Reflexión](https://sites.google.com/site/santiagotttori/automatizacion-y-control/4i-ac-tp1—sensores)

**2.2.5.2 Sensores de contacto**

Son los más simples, ya que activan o desactivan si se encuentran en contacto con un objeto. Su robustez lo hace muy usados en robótica.
2.2.5.3 Sensores de movimiento

Entre los más usados tenemos: Sensores de deslizamiento, sensores de velocidad, sensores de aceleración, sensores inductivos, sensores de presión, etc.

2.2.6 Sistemas Mecánicos

2.2.6.1 Cadenas

Una cadena es un componente confiable de una máquina, que transmite energía por medio de fuerzas extensibles, y se utiliza sobre todo para la transmisión y transporte de energía en los sistemas mecánicos. La función y las aplicaciones de la cadena son similares a la de una correa.

La cadena de rodillo de acero está formada por una serie de piezas de revolución que actúan como cojinetes, estando situados cada conjunto a una distancia precisa del otro mediante otras piezas planas llamadas placas. El conjunto cojinete está formado por un pasador y un casquillo sobre el que gira el rodillo de la cadena. El pasador y el casquillo son
cementados para permitir una articulación bajo presiones elevadas, y para soportar las presiones generadas por la carga y la acción de engrane impartida a través de los rodillos de cadenas, generalmente las placas exteriores e interiores se someten a un proceso de templado para obtener una mayor tenacidad.

Hay muchas clases de cadena, por ello es conveniente clasificar cada tipo de cadena por el material utilizado en su composición o por el método de construcción de ellas.

Podemos clasificar cadenas en cinco tipos:

1. Cadena de hierro fundido.
2. Cadena de acero de molde.
3. Cadena forjada.
4. Cadena de acero.
5. Cadena plástica.

Figura 12: Cadenas


**2.2.6.2 Piñón**

En mecánica, se denomina piñón a la rueda de un mecanismo de cremallera o a la rueda más pequeña de un par de ruedas dentadas, ya sea en una transmisión directa por engranaje o indirecta a través de una
cadena de transmisión o una correa de transmisión dentada. También se denomina piñón tensor a la rueda dentada destinada a tensar una cadena o una correa dentada de una transmisión.

Figura 13: Piñón Doble

CAPÍTULO 3

DESARROLLO DE LA SOLUCIÓN

3.1. Análisis

Descripción del Proceso de Automatización e Integración:

El proceso final del horno monocanal, inicia con la faja de salida alimentado con piezas cerámica (distintos formatos), luego pasa a través del transporte principal del horno monocanal, en donde conduce las piezas cerámicas hasta el área de clasificados; las piezas defectuosas son expulsadas de la línea para retornar manualmente al área de molienda y ser rehusadas, las piezas cerámicas buenas continúan su curso hasta la Máquina Falcon para su embalaje, en este transcurso de salida del horno al área de clasificados, es donde encontramos el déficit del proceso cuando se obstruye o acumulan piezas por distintos problemas que pueden suceder en la línea principal, cuando suceden estos inconvenientes el operador procede a destruir las piezas acumuladas para arrancar la línea, mientras tanto todas las piezas cerámicas que van saliendo del horno monocanal son transportadas a la faja auxiliar donde su final es el piso.
Para la elaboración de este proyecto, se ha dividido el proyecto en dos fases, de los cuales la Fase 1 y la Fase 2 incluyen análisis y simulación.

3.1.1. Análisis Fase 1:

Para definir y realizar el proyecto denominado “Proyecto de Inversión, para la Implementación de una Máquina Compensadora de Piezas cerámicas en la línea auxiliar del horno monocanal”, se procedió de acuerdo al diagrama de flujo de proceso del proyecto (Fig. 14). Se realizaron los diseños en forma independiente de las máquinas necesarias para el proyecto; para luego ser integrada todo en conjunto, obteniendo así; el diseño del proceso requerido. El funcionamiento de las máquinas, equipos y componentes fueron descritos en el marco teórico, capítulo 1.
Figura 14: Diagrama de Flujo del Proceso
Fuente: Elaboración Propia.
3.1.1.1 **Salida del Horno Monocanal**, se simuló de acuerdo a las dimensiones y características físicas proporcionados por el fabricante. Para fines de ilustración la salida del horno monocanal, no se incluye toda la máquina solo la salida, una banda trasportadora.

![Imagen de salida del horno monocanal](image1.png)

**Figura 15: Simulación Salida del Horno Monocanal**
*Fuente: Elaboración Propia*

3.1.1.2 **Línea Auxiliar del horno monocanal**, se simuló de acuerdo a las dimensiones y características físicas del manual del fabricante, ya que ésta línea de transporte existe en la empresa. unas fajas transportadoras y poleas.

![Imagen de línea auxiliar del horno monocanal](image2.png)

**Figura 16: Línea Auxiliar del Horno Monocanal**
*Fuente: Elaboración Propia*
3.1.1.3 Línea de transporte principal del horno monocanal, se simuló de acuerdo a las dimensiones y características físicas proporcionados por el fabricante. Para fines de ilustración la máquina cuenta ejes, poleas y fajas.

Figura 17: Línea Principal del Horno Monocanal
Fuente: Elaboración propia

3.1.1.4 Máquina Panconi, se adjunta foto de la máquina.

Figura 18: Máquina Panconi
Fuente: http://www.sitibt.com
3.1.2 Análisis fase 2:

Para poder diseñar la secuencia de funcionamiento del sistema, se procedió a seleccionar los componentes mecánicos y eléctricos necesarios para la implementación.

**Componentes mecánicos:**

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reductor</td>
</tr>
<tr>
<td>2</td>
<td>Motor</td>
</tr>
<tr>
<td>3</td>
<td>Rodamientos</td>
</tr>
<tr>
<td>4</td>
<td>Arbol Piñón</td>
</tr>
<tr>
<td>5</td>
<td>Anillo Seeger</td>
</tr>
<tr>
<td>6</td>
<td>Ejes</td>
</tr>
<tr>
<td>7</td>
<td>Cadenas</td>
</tr>
<tr>
<td>8</td>
<td>Pernos</td>
</tr>
<tr>
<td>9</td>
<td>Tueras</td>
</tr>
<tr>
<td>10</td>
<td>Soportes</td>
</tr>
<tr>
<td>11</td>
<td>Guías</td>
</tr>
<tr>
<td>12</td>
<td>aletas</td>
</tr>
</tbody>
</table>

**Dispositivos Eléctricos:**

Para seleccionar la marca y tipo de PLC a utilizar, se hizo un listado de las entradas y salidas necesarias del sistema; se consideró trabajar con el PLC OMRON CP1E – N20, ya que es un PLC ocupa poco espacio y es muy versátil.

Relación de componentes:

a. 01 PLC OMRON CP1E

c. 01 USB-CP1H PLC Cable de programación

d. 02 pulsadores XB4 – BA21

e. 01 pulsador de emergencia XB4 – BT845
f. Cable AWG N° 16

Teniendo definido los componentes a utilizar, se procedió con la programación y la simulación en software eléctrico y mecánico. Para el sistema mecánico se utilizó SolidWork y para el PLC el Cx-ONE de OMRON. Los softwares de programación utilizados son de descarga libre.

3.1.2.1. Diseño y programación de secuencia en PLC:

A continuación se detalla los pasos que se siguieron para la realización de la programación del sistema y el flujograma de la lógica del PLC.

- Configuración del PLC, de acuerdo a las entradas y salidas necesarias.

![Configuración PLC Omron](image)

Figura 19: Configuración PLC Omron
Fuente: Elaboración Propia

- Inicio del programa con Selección de Formato; el encendido y puesta en marcha de la Máquina.
Figura 20: Programa Selección de Formato
Fuente: Elaboración Propia

- Programa de Carga y Descarga de Piezas cerámicas.

Figura 21: Programa de Carga y Descarga del Compensador
Fuente: Elaboración Propia

- Programa para visualizar alarmas.

Figura 22: Programa para Visualizar Alarmas
Fuente: Elaboración Propia
3.1.2.2. Simulación de la pantalla Touch Screen:

Una vez adquirida la Pantalla Touch Screen se siguió los siguientes pasos para la simulación:

- En esta pantalla inicial se muestra la página principal del menú que aparece cuando la máquina enciende, en esta pantalla podemos acceder a todas las funciones de la máquina compensadora.
En esta pantalla se muestra el menú, donde podremos seleccionar los formatos y parámetros.

3.2. Desarrollo del Proyecto

En este apartado se describe la información del proyecto, la estructura del proyecto (EDT) y su desglosamiento y la descripción del desarrollo del proyecto por fases.

3.2.1. Estructura del Proyecto:

**PROYECTO**: “Proyecto de Inversión, para la Implementación de una Máquina Compensadora de Piezas cerámicas en la línea auxiliar del horno monocanal”.
3.2.2. **Fase 1: Planeamiento**

3.2.2.1. **Levantamiento de Información**

3.2.2.1.1. **Funcionamiento de la línea de la línea auxiliar:** Recolección de información acerca de la cantidad de piezas rotas que hay en la línea auxiliar del horno monocanal.

3.2.2.1.2. **Dimensionamiento:** Toma de dimensiones del área de trabajo, de las máquinas y bandas transportadoras existentes, para su posterior dibujo y diseño.

3.2.2.1.3. **Cotizaciones:** Solicitud de cotizaciones de máquina compensadora de piezas cerámicas, bandas transportadoras, componentes de control (PLC’S, HMI, etc.) y componentes mecánicos (Cadenas, ejes, Piñones, etc.).

3.2.3. **Fase 2: Simulación**

3.2.3.1. **Análisis Mecánico 1:** Simulación de la máquina compensadora, Línea de transporte, salida del horno monocanal.

3.2.3.2. **Análisis Mecánico 2:** Simulación de banda transportadora según requerimiento del área de trabajo, se realizará el levantamiento de dimensiones de una banda transportadora ya existente que trabaja en buenas condiciones para nuestros fines.

3.2.3.3. **Análisis Mecánico 3:** Simulación de integración de la máquina compensadora, la línea de transporte auxiliar del horno monocanal. Así mismo; se cotizará los elementos necesarios para la automatización (PLC’s, HMI, sensores, etc.).
3.2.3.4. **Pruebas**: Prueba de simulación del sistema automatizado.

3.2.3.5. **Programación de la Automatización**

3.2.3.6. **Programación PLC**:

Seleccionar el tipo de PLC a utilizar, tomando en cuenta las entradas, salidas, funciones especiales, robustez, modularidad, etc. Realizar la programación en modo LADDER.

3.2.3.7. **Programación HMI**:

Seleccionar el HMI compatible con el tipo de PLC seleccionado, deberá ser el de tipo de Visualización de Textos. Realizar la programación y enlazarlo con el PLC.
Figura 26: Estructura del Proyecto (EDT)

Fuente: Elaboración propia
CAPÍTULO 4

RESULTADOS

Para verificar la lógica programada es necesario probar su funcionamiento en forma física, es por ello que se realizaron las pruebas correspondientes en una máquina de stand by de la empresa, accionando el motor quien es el que conduce el apilamiento de las cerámicas cada vez que el sensor de entrada detecta.

Las pruebas se realizaron utilizando un PLC Omron CP1E – N20, el cual tiene 8 entradas y 8 salidas. Cabe resaltar que se obtuvo el apoyo del personal de mantenimiento de cerámica San Lorenzo. Se utilizaron adicionalmente 2 sensores de presencia y una laptop personal.

Estas pruebas fueron monitoreadas en forma online desde una Laptop, luego se verificó el funcionamiento de la secuencia programada.

La Fig. 27 muestra el Tablero Eléctrico donde se realizaron las pruebas.

La Fig. 28 muestra el PLC Omron que se utilizó en la prueba de la secuencia de la máquina compensadora.
Figura 27: Tablero Eléctrico de la Máquina Stand By
Fuente: Cerámica San Lorenzo

Figura 28: PLC Omron, Utilizado en la prueba de accionamiento del motor
Fuente: Cerámica San Lorenzo
En la Fig. 29 se muestra el motor de 2.2 KW utilizado para la prueba de la máquina compensadora.

Figura 29: Motor de 2.2 KW
Fuente: Cerámica San Lorenzo

4.1 Resultados

Como resultados del desarrollo del proyecto tenemos:

1. El diseño CAD, la simulación mediante video del proceso en el software SolidWorks y el análisis costo – beneficio del proyecto de la Fase 1; fueron determinantes para la viabilidad del proyecto.

2. Las pruebas y simulaciones del control eléctrico - mecánico de la máquina compensadora, en las instalaciones de la empresa Cerámica San Lorenzo, garantizó y validó la programación de esta máquina. Estas pruebas y simulaciones se realizaron en un tablero de la una máquina en stand by de la empresa mencionada anteriormente. Ver imágenes de resultados experimentales.

3. Con el desarrollo e implementación del proyecto, se tendrá que inducir a los técnicos de mantenimiento para su respectivo mantenimiento bajo una frecuencia establecida y también para realizar las regulaciones que requiera la máquina.
4.2 Evaluación de la Inversión y beneficios esperados:

4.2.1 Estimación de la Inversión.

A continuación se presenta la valorización de los equipos y componentes requeridos para la implementación del sistema automatizado e integrado a la máquina compensadora.

4.2.2 Estimación de la inversión en máquinas y equipos.

En la Tabla 1 se muestran los costos de la Fase 1, por ser mano de obra proporcionada por la empresa Cerámica San Lorenzo no tiene gasto alguno.

En la Tabla 2 se muestra el costo de una Faja transportadora cuando se implementa la máquina compensadora.

<table>
<thead>
<tr>
<th>Tabla 1 Costo Fase 1, factibilidad del proyecto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proceso de Factibilidad del proyecto</td>
</tr>
<tr>
<td>Mano de obra</td>
</tr>
<tr>
<td>0 (Costo hundido)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabla 2 Costo fase 2, Adquisición de Equipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipos a comprar</td>
</tr>
<tr>
<td>Fajas Transportadoras</td>
</tr>
<tr>
<td>Costo Total</td>
</tr>
</tbody>
</table>

4.2.3 Estimación de la inversión en compra de materiales.

En la Tabla 3 se muestra el costo de materiales necesarios para la implementación del sistema automatizado e integrado en la línea auxiliar del horno monocanal.
4.2.4 Resumen de la Inversión

En la Tabla 4 se muestra el resumen de la inversión para la implementación de la máquina compensadora e integrada a la línea auxiliar del horno monocanal.

<table>
<thead>
<tr>
<th>DESCRIPCION</th>
<th>COSTO(S/.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compra de Equipos</td>
<td>S/. 8,500</td>
</tr>
<tr>
<td>Compra de Materiales</td>
<td>S/. 22,300</td>
</tr>
<tr>
<td><strong>COSTO TOTAL</strong></td>
<td><strong>S/. 30,800</strong></td>
</tr>
</tbody>
</table>

4.2.5 Análisis costo beneficio

Para la implementación de la máquina compensadora en la línea auxiliar del horno monocanal, se analizó el costo de producción actual y el costo de producción con la máquina compensadora, ver Tabla 7. Así mismo, se realiza una comparación de la producción actual y la producción con la máquina.
El análisis realizado en la etapa inicial del proyecto, de las tablas mostradas podemos afirmar lo siguiente:

1. De la Tabla 5, el costo de producción disminuye en 5%, incremento de ganancias netas o utilidades.
2. De la tabla 5, la producción de piezas cerámicas aumenta en 5%.

Además del beneficio económico, al contar con un sistema automatizado e integrado en la línea auxiliar del horno; se pueden obtener los siguientes beneficios cualitativos:

1. **Actualización tecnológica en el Área de Trasporte**; al contar con nuevas tecnologías las cuales se evidencian en la máquina simulada, en la parte eléctrica, electrónica y mecánica; ya que son compactas y eficientes. Entre los que se puede destacar: PLC y variador de velocidad, sistemas mecánicos e interfaz táctil y gráfica, entre otros.

2. **Flexibilidad a otro formato de piezas cerámicas**; al ser regulables se puede adaptar para otros formatos de piezas.

### Tabla 5 Comparación costo de producción Actual Vs. Costo de Producción con la Integración

<table>
<thead>
<tr>
<th>METRAJE CUADRADO ANUAL PRODUCIDO FUTURO</th>
<th>7,350,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>GASTO DE PRODUCCION</td>
<td>S/. 1,884,800</td>
</tr>
<tr>
<td>S/. Por M2</td>
<td>0.26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>METRAJE CUADRADO ANUAL PRODUCIDO ACTUAL</th>
<th>7,000,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>GASTO DE PRODUCCION</td>
<td>S/. 1,884,800</td>
</tr>
<tr>
<td>S/. Por M2</td>
<td>0.27</td>
</tr>
</tbody>
</table>
### 4.2.6  Retorno de la Inversión (Pay Back)

Tabla 6 Resumen del retorno de la Inversión del proyecto

<table>
<thead>
<tr>
<th>FLUJO DE CAJA DEL PROYECTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>mes-1</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Ingresos</td>
</tr>
<tr>
<td>Egresos</td>
</tr>
<tr>
<td>Fluo Neto</td>
</tr>
<tr>
<td>Acumulado</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

<table>
<thead>
<tr>
<th>Cálculo del Precio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costo</td>
</tr>
<tr>
<td>Margen</td>
</tr>
<tr>
<td>Precio</td>
</tr>
<tr>
<td>Utilidad</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tasa de Dcto anual</th>
<th>11%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tasa de Dcto</td>
<td>0.953%</td>
</tr>
<tr>
<td>VANI</td>
<td>S/. 36,855.66</td>
</tr>
<tr>
<td>VAN NETO</td>
<td>S/. 6,425.54</td>
</tr>
<tr>
<td>Rentabilidad</td>
<td>VAN NETO / VANI</td>
</tr>
</tbody>
</table>
Cronograma del proyecto

Figura 30: Gantt de Actividades

Fuente: Elaboración propia
CONCLUSIONES

Como resultados de este proyecto se concluye lo siguiente:

1. Con este proyecto, se garantiza el descongestionamiento de la línea principal del horno monocanal y calidad total de las piezas cerámicas (sin rotura y grietas). Evitando de esta manera rechazos de producciones por parte del cliente y pérdidas para la empresa.

2. Con la implementación del sistema automatizado en la línea auxiliar, se logrará una reducción de RR.HH en la línea de proceso.

3. Con la operación del nuevo sistema automatizado e integrado con la salida del horno monocanal, se estima un incremento en la productividad.

4.3 Trabajos Futuros:

A continuación se consideran algunos trabajos futuros a desarrollar:

- Desarrollar un sistema SCADA que permita enlazar todas las máquinas del proceso y así no detener manualmente la línea de transporte a la salida del horno monocanal y realizar la inspección de manera automática del proceso.
- Ampliación del sistema de monitoreo del proceso, mediante la incorporación de una red de SCADA, con la finalidad que las diferentes áreas de la empresa puedan obtener información del proceso.
BIBLIOGRAFÍA


SISDEC. (s.f.). Automatización y Control. Recuperado el 21 de 02 de 2015, de Automatización y Control: http://www.sisdec.cl/automatizacion.html


Electric, S. (s.f.). Schneider electric. Recuperado el 04 de 02 de 2015, de Schneider electric: http://www.schneider-electric.com/site/home/index.cfm/pe/

SISDEC. (s.f.). Automatización y Control. Recuperado el 21 de 02 de 2015, de Automatización y Control: http://www.sisdec.cl/automatizacion.html

UNQ. (2010). Introducción a HMI. Recuperado el 13 de 01 de 2015, de Introducción a HMI: http://iaci.unq.edu.ar/materias/laboratorio2/HMI%5CIntroduccion%20HMI.pdf
ANEXOS

En este apartado se encuentran, los planos de la máquina diseñada, despiece de componentes, características técnicas PLC Omron.

Figura 31: Simulación en SolidWorks  
Fuente: Elaboración propia

Figura 32: Simulación en SolidWorks  
Fuente: Elaboración propia
Figura 33: Simulación en SolidWorks
Fuente: Elaboración propia
Figura 34: Despiece de Máquina Compensadora

Fuente: Elaboración propia
Figura 35: Despiece de Máquina Compensadora

Fuente: Elaboración propia
Figura 35 Despiece de Máquina Compensadora

Fuente: Elaboración propia

PLC OMRON CP1E – N20

Figura 36 PLC OMRON CP1E – N20

Fuente: https://www.ia.omron.com/products/category/automation-systems/programmable-controllers/